Mostrando entradas con la etiqueta Morfógenos. Mostrar todas las entradas
Mostrando entradas con la etiqueta Morfógenos. Mostrar todas las entradas

13 de mayo de 2016

Más allá de Alan Turing: sus aportaciones a la inteligencia artificial y a la biología matemática.

A pesar de, su prematura muerte en 1954, Alan Turing ha sido uno de los matemáticos más brillantes e influyentes del siglo XX. Con su trabajo no sólo sentó las bases teóricas de la informática sino también abrió el campo de la inteligencia artificial y el de la biología matemática. Además de su labor como matemático, dejó un número importante de documentos sin concluir con comentarios, anotaciones y observaciones acerca de la "maquinaria inteligente" y de la morfogénesis.

La muerte de Alan Turing no le permitió concluir sus investigaciones en la Universidad de Manchester. Durante su estancia, Alan Turing abordó el diseño de modelos de circuitos neuronales para estudiar el cerebro humano que él denominaba "maquinaria inteligente". En ese mismo año, Belmont Forley y Wesley Clark lograron la simulación, en un ordenador, de una red de 128 neuronas "capaces de reconocer patrones sencillos tras una fase de entrenamiento." Observaron que, si se eliminaba un 10% de las neuronas, la red no perdía su capacidad de reconocimiento de patrones. El modelo de Forley y Clark consistía en neuronas conectadas entre sí al azar, asociando a cada conexión un valor de peso, el resultado era algo parecido a una red Mc Culloch- Pitts. En 1956, dos años después de la muerte de Alan Turing, John McCarthy acuñó el término inteligencia artificial durante una conferencia en la universidad de Barmouth. Un año más tarde, en 1957, Frank Rosenblatt desarrolló el perceptrón. A partir de éste, surgieron otros modelos de redes neuronales artificiales, como, por ejemplo, las redes con retropropagación que permiten reconocer letras, números, imágenes, etc. Actualmente, estas redes de retropropagación están muy presentes en la clasificación del correo electrónico, en el reconocimiento del latido cardíaco del feto para distinguirlo del de la madre, etc. En resumen, ha hecho falta más de medio siglo para que, las ideas acerca de la "maquinaria inteligente" de Alan Turing, formen parte de nuestra vida cotidiana.

En sus últimos años de vida, Alan Turing hizo experimentos pioneros sobre morfogénesis, utilizando los ordenadores de la Universidad de Manchester. La morfogénesis son procesos biológicos que conducen a que un organismo desarrolle una determinada forma.  Alan Turing postuló la existencia de los morfógenos así como la existencia de ciertos procesos físico- químicos y fenómenos como la activación o la inhibición responsables de los procesos de diferenciación celular que estaban detrás de las etapas por las que pasa una célula hasta alcanzar o convertirse en una célula especializada. La idea central era que, las posiciones de las células de un embrión, aún sin diferenciar, contienen morfógenos que controlarían posteriormente su desarrollo. La genialidad de Alan Turing fue la predicción de la existencia de los morfógenos, antes que fueran descubiertos muchos años después.  Fue, en los años 60, cuando Lewis Wolpert redefinió el concepto de morfógeno, introducido por Turing, tras descubrir una proteína con estas características en la mosca del vinagre Drosophila melenogaster. Los morfógenos pueden ser sustancias químicas, desde proteínas hasta vitaminas, que funcionan controlando los genes. En la actualidad, el modelo propuesto por Alan Turing, ha sido demostrado experimentalmente. Sin embargo, algunos sostienen que la morfogénesis ocurre de otra forma, a la postulada por Alan Turing. Las células seguirían un plan maestro por el que las células del embrión se irían especializando, como consecuencia de una serie de transformaciones, cuya explicación estaría en las propiedades mecánicas de esas células. Esta teoría está respaldada por investigadores como Conrad Waddington, Murray Gell- Mann o Brian Goodwin. 


24 de febrero de 2016

Biografía completa de Alan Turing VI

En este sexto- y último- post sobre la biografía de Alan Turing transcurre en los 4 últimos años de su vida, entre 1951 y 1954.

Hicieron falta 15 años para que Alan Turing recibiera el reconocimiento por su trabajo. En 1951, fue nombrado miembro de la Royal Society. En 1953, recibió el encargo de impartir una asignatura sobre teoría de la computación en la Universidad de Manchester. Una de sus mayores aportaciones fue su investigación pionera en el enfoque computacional de la biología, dando lugar a una nueva disciplina, la biología matemática o biomatemática. Una de las cuestiones estudiadas fue la simulación por ordenador de la morfogénesis, es decir, el crecimiento y la forma de los seres vivos. Uno de los ejemplos fue la aplicación de la sucesión de Fibonacci a las estructuras de las plantas. El número de pétalos en las flores o la disposición en espiral de las hojas en las plantas se ajustan a esta sucesión. En esa época, uno de los trabajos más importantes realizados por Alan Turing fue el estudio de la formación de los patrones de rayas y manchas que aparecen en la piel de muchos mamíferos, peces o conchas. Lo interesante, y hasta cierto punto revolucionario, fue que estos estudios pioneros sobre morfogénesis los relacionó con su trabajo sobre circuitos neuronales. Alan Turing llegó a plantearse si la forma en que está organizado el cerebro no sería el resultado del control ejercido por los genes durante el desarrollo del cerebro.

En 1952, Alan Turing publicó un artículo titulado "la base química de la morfogénesis" en el que propuso la hipótesis de que la formación de patrones como las manchas o las bandas en la piel de algunos animales tendrían lugar por un mecanismo conocido como reacción- difusión. El mecanismo propuesta por Alan Turing fue el siguiente: "las células pigmentadas producirían dos clases de moléculas, dos tipos diferentes de morfógenos, uno activador, que promovería su propia producción como la del morfógeno activador. Las dos clases de moléculas se difundirían por el tejido embrionario, reaccionando entre sí y dando como resultado un patrón de concentraciones, o "huella" que servirá a las células embrionarias para dirigirlas en el proceso embrionario que les llevará a la formación de un patrón en el adulto." A partir de ahí, Alan Turing propuso unas ecuaciones de reacción- difusión que aún hoy son el fundamento sobre la morfogénesis. Estos estudios fueron los últimos que fueron llevados a cabo antes de su suicidio. La trágica muerte de Alan Turing se precipitó por el trato degradante que la justicia le sometió por haber tenido prácticas homosexuales que en aquella época estaban penadas en el Reino Unido. A comienzos de 1952, Alan Turing fue detenido y llevado a juicio a finales de marzo, acusado de mantener relaciones homosexuales con un joven. Alan Turing denunció el robo en su casa y rebeló su homosexualidad a las autoridades policiales. Fue condenado a un tratamiento con hormonas para anular su libido. El tratamiento consistió en la inyección de estrógenos que le causó un fuerte impacto emocional. Tenía 41 años cuando hallaron su cadáver. Se encontró una manzana con cianuro potásico. Con su muerte, se perdió a uno de los matemáticos más brillantes del siglo XX.

Estudios sobre morfogénesis de Alan Turing

29 de enero de 2016

La contribución de Alan Turing a la morfogénesis

La morfogénesis es el noveno capítulo del libro Rompiendo códigos. Vida y legado de Turing. En este capítulo, se centra en las aportaciones de Alan Turing al estudio de la morfogénesis, y muy especialmente, su propuesta del modelo de reacción-difusión como base explicativa del desarrollo de patrones biológicos que están detrás de las manchas o de las rayas en la piel de los animales, por ejemplo.

En 1951, Alan Turing comienza a interesarse por las aplicaciones de las matemáticas en la teoría de la forma en biología. En 1952, publica un artículo titulado "Las bases químicas de la morfogénesis" sobre su trabajo en el campo de la morfogénesis- hoy conocida como biología del desarrollo-, y, como había hecho antes, introdujo una serie de ideas revolucionarias sobre la biología matemática. En su artículo, propuso un modelo de reacción-difusión como base explicativa para describir el desarrollo de patrones biológicos como las rayas, las manchas o las bandas en la piel de los animales o en las conchas de los moluscos. Según su modelo de reacción- difusión, los patrones biológicos, como las rayas de un tigre o las manchas de un leopardo, se formarían por la interacción de unos morfógenos que son las moléculas que señalizan el desarrollo del tejido. Los dos morfógenos, propuestos por Alan Turing, son un activador y un inhibidor. En su hipótesis, el activador formaría, por ejemplo, las rayas del tigre, pero en su interacción con el inhibidor dejaría de manifestarse, creándose un espacio en blanco. En ese momento, el proceso se revertiría y la franja siguiente sería de color. La interacción de estos dos morfógenos, un activador y un inhibidor, se combinaría para crear todo el patrón de rayas.

Morfogénesis: modelo de reacción- difusión


Alan Turing no sólo desarrollo este modelo, sino que, con la ayuda de la computadora de la Universidad de Manchester, fue capaz de hacer cálculos matemáticos sobre biología del desarrollo, y que aunque pasó desapercibido en el ámbito académico hasta décadas después, puso a disposición numerosos datos obtenidos a través de la computadora de Manchester. Para finalizar, además de sus aportaciones a la morfogénesis, Alan Turing dejó "notas" y "bocetos" de trabajos sobre otros temas de aplicación de las matemáticas a la biología, especialmente en filotaxis, disciplina que estudia la distribución de las ramas y hojas en las plantas.